A quantitative wildfire risk assessment using a modular approach of geostatistical clustering and regionally distinct valuations of assets—A case study in Oregon, PLoS ONE | DeepDyve (2024)

  • Bookmark
  • Add to Folder
  • Cite
  • Social

Loading next page...

A quantitative wildfire risk assessment using a modular approach of geostatistical clustering and regionally distinct valuations of assets—A case study in Oregon, PLoS ONE | DeepDyve (1)

A quantitative wildfire risk assessment using a modular approach of geostatistical clustering and regionally distinct valuations of assets—A case study in Oregon, PLoS ONE | DeepDyve (2)

/lp/public-library-of-science-plos-journal/a-quantitative-wildfire-risk-assessment-using-a-modular-approach-of-JvMuuK8wzo

  • (TheobaldDM & RommeWH. Expansion of the US wildland–urban interface. Landscape and Urban Planning2007; 83, 340–354. doi: 10.1016/j.landurbplan.2007.06.002)

    TheobaldDM & RommeWH. Expansion of the US wildland–urban interface. Landscape and Urban Planning2007; 83, 340–354. doi: 10.1016/j.landurbplan.2007.06.002

    TheobaldDM & RommeWH. Expansion of the US wildland–urban interface. Landscape and Urban Planning2007; 83, 340–354. doi: 10.1016/j.landurbplan.2007.06.002, TheobaldDM & RommeWH. Expansion of the US wildland–urban interface. Landscape and Urban Planning2007; 83, 340–354. doi: 10.1016/j.landurbplan.2007.06.002

  • (Azuma DL, Donnegan J, Gedney D. Southwest Oregon Biscuit Fire: An Analysis of Forest Resources and Fire Severity. 2002: Res. Pap. PNW-RP-560. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 32 pp. 10.2737/PNW-RP-560.)

    Azuma DL, Donnegan J, Gedney D. Southwest Oregon Biscuit Fire: An Analysis of Forest Resources and Fire Severity. 2002: Res. Pap. PNW-RP-560. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 32 pp. 10.2737/PNW-RP-560.

    Azuma DL, Donnegan J, Gedney D. Southwest Oregon Biscuit Fire: An Analysis of Forest Resources and Fire Severity. 2002: Res. Pap. PNW-RP-560. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 32 pp. 10.2737/PNW-RP-560., Azuma DL, Donnegan J, Gedney D. Southwest Oregon Biscuit Fire: An Analysis of Forest Resources and Fire Severity. 2002: Res. Pap. PNW-RP-560. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 32 pp. 10.2737/PNW-RP-560.

  • (DaviesDL & BouldinDW. A Cluster Separation Measure. IEEE T Pattern Anal. PAMI-1. 1979;2: 224–227. doi: 10.1109/TPAMI.1979.476690921868852)

    DaviesDL & BouldinDW. A Cluster Separation Measure. IEEE T Pattern Anal. PAMI-1. 1979;2: 224–227. doi: 10.1109/TPAMI.1979.476690921868852

    DaviesDL & BouldinDW. A Cluster Separation Measure. IEEE T Pattern Anal. PAMI-1. 1979;2: 224–227. doi: 10.1109/TPAMI.1979.476690921868852, DaviesDL & BouldinDW. A Cluster Separation Measure. IEEE T Pattern Anal. PAMI-1. 1979;2: 224–227. doi: 10.1109/TPAMI.1979.476690921868852

  • (McCaskillGL. The Hungry Bob Fire & Fire Surrogate Study: A 20-Year Evaluation of the Treatment Effects. Forests. 2019;10: 15. doi: 10.3390/f10010015)

    McCaskillGL. The Hungry Bob Fire & Fire Surrogate Study: A 20-Year Evaluation of the Treatment Effects. Forests. 2019;10: 15. doi: 10.3390/f10010015

    McCaskillGL. The Hungry Bob Fire & Fire Surrogate Study: A 20-Year Evaluation of the Treatment Effects. Forests. 2019;10: 15. doi: 10.3390/f10010015, McCaskillGL. The Hungry Bob Fire & Fire Surrogate Study: A 20-Year Evaluation of the Treatment Effects. Forests. 2019;10: 15. doi: 10.3390/f10010015

  • (Thorson TD, Bryce SA, Lammers DA, Woods AJ, Omernik JM, Kagan J, et al. Ecoregions of Oregon. U.S. Geological Survey, Reston, VA 2002. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryId=96625.)

    Thorson TD, Bryce SA, Lammers DA, Woods AJ, Omernik JM, Kagan J, et al. Ecoregions of Oregon. U.S. Geological Survey, Reston, VA 2002. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryId=96625., Thorson TD, Bryce SA, Lammers DA, Woods AJ, Omernik JM, Kagan J, et al. Ecoregions of Oregon. U.S. Geological Survey, Reston, VA 2002. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryId=96625.

  • I. Allen, S. Chhin, Jianwei Zhang (2019)

    Fire and Forest Management in Montane Forests of the Northwestern States and California, USA

    Fire

  • Matthew Thompson, K. Riley, Dan Loeffler, J. Haas (2017)

    Modeling Fuel Treatment Leverage: Encounter Rates, Risk Reduction, and Suppression Cost Impacts

    Forests, 8

  • C. Kolden (2019)

    We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk

    Fire

  • Joe Scott, E. Reinhardt (2003)

    Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior
  • J. Picotte, K. Bhattarai, D. Howard, Jennifer Lecker, J. Epting, B. Quayle, N. Benson, K. Nelson (2020)

    Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products

    Fire Ecology, 16

  • (CassellBA, SchellerRM, LucashMS, HurteauMD, LoudermilkEL. Widespread severe wildfires under climate change lead to increased forest hom*ogeneity in dry mixed-conifer forests. Ecosphere2019;10: e02934. doi: 10.1002/ecs2.2934)

    CassellBA, SchellerRM, LucashMS, HurteauMD, LoudermilkEL. Widespread severe wildfires under climate change lead to increased forest hom*ogeneity in dry mixed-conifer forests. Ecosphere2019;10: e02934. doi: 10.1002/ecs2.2934

    CassellBA, SchellerRM, LucashMS, HurteauMD, LoudermilkEL. Widespread severe wildfires under climate change lead to increased forest hom*ogeneity in dry mixed-conifer forests. Ecosphere2019;10: e02934. doi: 10.1002/ecs2.2934, CassellBA, SchellerRM, LucashMS, HurteauMD, LoudermilkEL. Widespread severe wildfires under climate change lead to increased forest hom*ogeneity in dry mixed-conifer forests. Ecosphere2019;10: e02934. doi: 10.1002/ecs2.2934

  • (HomerCG, HuangC., YangL, WylieBK, CoanM. Development of a 2001 National Land Cover Database for the United States. Photogramm Eng Remote Sensing. 2004;70: 829–840. doi: 10.14358/PERS.70.7.829)

    HomerCG, HuangC., YangL, WylieBK, CoanM. Development of a 2001 National Land Cover Database for the United States. Photogramm Eng Remote Sensing. 2004;70: 829–840. doi: 10.14358/PERS.70.7.829

    HomerCG, HuangC., YangL, WylieBK, CoanM. Development of a 2001 National Land Cover Database for the United States. Photogramm Eng Remote Sensing. 2004;70: 829–840. doi: 10.14358/PERS.70.7.829, HomerCG, HuangC., YangL, WylieBK, CoanM. Development of a 2001 National Land Cover Database for the United States. Photogramm Eng Remote Sensing. 2004;70: 829–840. doi: 10.14358/PERS.70.7.829

  • (FlemingRA, CandauJ, McAlpineRS. Landscape-Scale Analysis of Interactions between Insect Defoliation and Forest Fire in Central Canada. Clim Change. 2002;55: 251–272. doi: 10.1023/A:1020299422491)

    FlemingRA, CandauJ, McAlpineRS. Landscape-Scale Analysis of Interactions between Insect Defoliation and Forest Fire in Central Canada. Clim Change. 2002;55: 251–272. doi: 10.1023/A:1020299422491

    FlemingRA, CandauJ, McAlpineRS. Landscape-Scale Analysis of Interactions between Insect Defoliation and Forest Fire in Central Canada. Clim Change. 2002;55: 251–272. doi: 10.1023/A:1020299422491, FlemingRA, CandauJ, McAlpineRS. Landscape-Scale Analysis of Interactions between Insect Defoliation and Forest Fire in Central Canada. Clim Change. 2002;55: 251–272. doi: 10.1023/A:1020299422491

  • (Kagan JS, Vrilakas S, Christy JA, Gaines EP, Wise L, Pahl C, et al. Rare, Threatened and Endangered Species of Oregon. Institute for Natural Resources 2016, Portland State University, Portland, Oregon. 130 pp. https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1022&context=naturalresources_pub.)

    Kagan JS, Vrilakas S, Christy JA, Gaines EP, Wise L, Pahl C, et al. Rare, Threatened and Endangered Species of Oregon. Institute for Natural Resources 2016, Portland State University, Portland, Oregon. 130 pp. https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1022&context=naturalresources_pub., Kagan JS, Vrilakas S, Christy JA, Gaines EP, Wise L, Pahl C, et al. Rare, Threatened and Endangered Species of Oregon. Institute for Natural Resources 2016, Portland State University, Portland, Oregon. 130 pp. https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1022&context=naturalresources_pub.

  • J. Horel, Xia Dong (2010)

    An Evaluation of the Distribution of Remote Automated Weather Stations (RAWS)

    Journal of Applied Meteorology and Climatology, 49

  • Susan Stewart, V. Radeloff, R. Hammer, T. Hawbaker (2007)

    Defining the Wildland-Urban Interface

    Journal of Forestry, 105

  • T. Kolb, C. Fettig, M. Ayres, B. Bentz, J. Hicke, R. Mathiasen, J. Stewart, A. Weed (2016)

    Observed and anticipated impacts of drought on forest insects and diseases in the United States

    Forest Ecology and Management, 380

  • S. Parks, Lisa Holsinger, Matthew Panunto, W. Jolly, S. Dobrowski, Gregory Dillon (2018)

    High-severity fire: evaluating its key drivers and mapping its probability across western US forests

    Environmental Research Letters, 13

  • R. Mutch, S. Arno, James Brown, C. Carlson, R. Ottmar, Janice Peterson (1993)

    Forest Health in the Blue Mountains: A Management Strategy for Fire-Adapted Ecosystems

    , 310

  • (HaugoR, ZangerC, DeMeoT, RingoC, ShliskyA, BlankenshipK, et al. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA, Forest Ecol Manage. 2015;335: 37–50. doi: 10.1016/j.foreco.2014.09.014)

    HaugoR, ZangerC, DeMeoT, RingoC, ShliskyA, BlankenshipK, et al. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA, Forest Ecol Manage. 2015;335: 37–50. doi: 10.1016/j.foreco.2014.09.014

    HaugoR, ZangerC, DeMeoT, RingoC, ShliskyA, BlankenshipK, et al. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA, Forest Ecol Manage. 2015;335: 37–50. doi: 10.1016/j.foreco.2014.09.014, HaugoR, ZangerC, DeMeoT, RingoC, ShliskyA, BlankenshipK, et al. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA, Forest Ecol Manage. 2015;335: 37–50. doi: 10.1016/j.foreco.2014.09.014

  • (GraysonLM, ProgarRA, HoodSM. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds. For Ecol Manage. 2017;399: 213–226. doi: 10.1016/j.foreco.2017.05.038)

    GraysonLM, ProgarRA, HoodSM. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds. For Ecol Manage. 2017;399: 213–226. doi: 10.1016/j.foreco.2017.05.038

    GraysonLM, ProgarRA, HoodSM. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds. For Ecol Manage. 2017;399: 213–226. doi: 10.1016/j.foreco.2017.05.038, GraysonLM, ProgarRA, HoodSM. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds. For Ecol Manage. 2017;399: 213–226. doi: 10.1016/j.foreco.2017.05.038

  • (2020)

    Planning and Implementing Cross-boundary, Landscape-scale Restoration and Wildfire Risk Reduction Projects—A Guide to Achieving the Goals of the National Cohesive Wildland Fire Management Strategy
  • D. Cutler, Thomas Edwards, Karen Beard, Adele Cutler, Kyle Hess, J. Gibson, Joshua Lawler (2017)

    Utah State University From the SelectedWorks of
  • P. Higuera, J. Abatzoglou (2020)

    Record‐setting climate enabled the extraordinary 2020 fire season in the western United States

    Global Change Biology, 27

  • P. Hessburg, J. Agee, J. Franklin (2005)

    Dry forests and wildland fires of the inland Northwest USA: Contrasting the landscape ecology of the pre-settlement and modern eras

    Forest Ecology and Management, 211

  • J. Abatzoglou, Daniel McEvoy, K. Redmond (2013)

    The West Wide Drought Tracker: Drought Monitoring at Fine Spatial Scales

    Bulletin of the American Meteorological Society, 98

  • (DuqueJC, RamosR, SurinachJ. Supervised Regionalization Methods: A Survey. Int Regional Sci Rev. 2007;30: 195–220. doi: 10.1177/0160017607301605)

    DuqueJC, RamosR, SurinachJ. Supervised Regionalization Methods: A Survey. Int Regional Sci Rev. 2007;30: 195–220. doi: 10.1177/0160017607301605

    DuqueJC, RamosR, SurinachJ. Supervised Regionalization Methods: A Survey. Int Regional Sci Rev. 2007;30: 195–220. doi: 10.1177/0160017607301605, DuqueJC, RamosR, SurinachJ. Supervised Regionalization Methods: A Survey. Int Regional Sci Rev. 2007;30: 195–220. doi: 10.1177/0160017607301605

  • (Scott JH & Reinhardt ED. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Res. Pap. RMRS-RP-29. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 59 p. https://www.fs.fed.us/rm/pubs/rmrs_rp029.pdf.)

    Scott JH & Reinhardt ED. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Res. Pap. RMRS-RP-29. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 59 p. https://www.fs.fed.us/rm/pubs/rmrs_rp029.pdf., Scott JH & Reinhardt ED. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Res. Pap. RMRS-RP-29. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 59 p. https://www.fs.fed.us/rm/pubs/rmrs_rp029.pdf.

  • (Short KC, Finney MA, Scott JH, Gilbertson-Day JW, Grenfell IC. Spatial dataset of probabilistic wildfire risk components for the conterminous United States. 1st Edition. Fort Collins, CO 2016: Forest Service Research Data Archive. 10.2737/RDS-2016-0034.)

    Short KC, Finney MA, Scott JH, Gilbertson-Day JW, Grenfell IC. Spatial dataset of probabilistic wildfire risk components for the conterminous United States. 1st Edition. Fort Collins, CO 2016: Forest Service Research Data Archive. 10.2737/RDS-2016-0034.

    Short KC, Finney MA, Scott JH, Gilbertson-Day JW, Grenfell IC. Spatial dataset of probabilistic wildfire risk components for the conterminous United States. 1st Edition. Fort Collins, CO 2016: Forest Service Research Data Archive. 10.2737/RDS-2016-0034., Short KC, Finney MA, Scott JH, Gilbertson-Day JW, Grenfell IC. Spatial dataset of probabilistic wildfire risk components for the conterminous United States. 1st Edition. Fort Collins, CO 2016: Forest Service Research Data Archive. 10.2737/RDS-2016-0034.

  • (ThompsonMP, BowdenP, BroughA, ScottJH, Gilbertson-DayJW, TaylorAH, et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. Forests. 2016;7: 64.)

    ThompsonMP, BowdenP, BroughA, ScottJH, Gilbertson-DayJW, TaylorAH, et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. Forests. 2016;7: 64.

    ThompsonMP, BowdenP, BroughA, ScottJH, Gilbertson-DayJW, TaylorAH, et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. Forests. 2016;7: 64., ThompsonMP, BowdenP, BroughA, ScottJH, Gilbertson-DayJW, TaylorAH, et al. Application of wildfire risk assessment results to wildfire response planning in the Southern Sierra Nevada, California, USA. Forests. 2016;7: 64.

  • Joe Scott, Matthew Thompson, D. Calkin (2013)

    A Wildfire Risk Assessment Framework for Land and Resource Management
  • (LoehmanRA, KeaneRE, HolsingerLM, WuZ. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates. Landscape Ecol. 2017;32: 1447–1459. doi: 10.1007/s10980-016-0414-6)

    LoehmanRA, KeaneRE, HolsingerLM, WuZ. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates. Landscape Ecol. 2017;32: 1447–1459. doi: 10.1007/s10980-016-0414-6

    LoehmanRA, KeaneRE, HolsingerLM, WuZ. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates. Landscape Ecol. 2017;32: 1447–1459. doi: 10.1007/s10980-016-0414-6, LoehmanRA, KeaneRE, HolsingerLM, WuZ. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates. Landscape Ecol. 2017;32: 1447–1459. doi: 10.1007/s10980-016-0414-6

  • (Calkin D, Ager A, Gilbertson-Day J. Wildfire Risk and Hazard: procedures for the first approximation. In, Gen. Tech. Rep. U.S. Department of Agriculture 2010, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p. 62. 10.2737/RMRS-GTR-235.)

    Calkin D, Ager A, Gilbertson-Day J. Wildfire Risk and Hazard: procedures for the first approximation. In, Gen. Tech. Rep. U.S. Department of Agriculture 2010, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p. 62. 10.2737/RMRS-GTR-235.

    Calkin D, Ager A, Gilbertson-Day J. Wildfire Risk and Hazard: procedures for the first approximation. In, Gen. Tech. Rep. U.S. Department of Agriculture 2010, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p. 62. 10.2737/RMRS-GTR-235., Calkin D, Ager A, Gilbertson-Day J. Wildfire Risk and Hazard: procedures for the first approximation. In, Gen. Tech. Rep. U.S. Department of Agriculture 2010, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p. 62. 10.2737/RMRS-GTR-235.

  • (BuechlingA & TobalskeC. Predictive Habitat Modeling of Rare Plant Species in Pacific Northwest Forests, West J Appl For. 2011;26: 71–81. doi: 10.1093/wjaf/26.2.71)

    BuechlingA & TobalskeC. Predictive Habitat Modeling of Rare Plant Species in Pacific Northwest Forests, West J Appl For. 2011;26: 71–81. doi: 10.1093/wjaf/26.2.71

    BuechlingA & TobalskeC. Predictive Habitat Modeling of Rare Plant Species in Pacific Northwest Forests, West J Appl For. 2011;26: 71–81. doi: 10.1093/wjaf/26.2.71, BuechlingA & TobalskeC. Predictive Habitat Modeling of Rare Plant Species in Pacific Northwest Forests, West J Appl For. 2011;26: 71–81. doi: 10.1093/wjaf/26.2.71

  • R. Groot, M. Wilson, R. Boumans (2002)

    A typology for the classification, description and valuation of ecosystem functions, goods and services

    Ecological Economics, 41

  • T. Quigley

    Wildfire Risk and Hazard : Procedures for the First Approximation
  • (AllenI, ChhinS, ZhangJ. Fire and Forest Management in Montane Forests of the Northwestern States and California, USA. Fire. 2019; 2:17. doi: 10.3390/fire2020017)

    AllenI, ChhinS, ZhangJ. Fire and Forest Management in Montane Forests of the Northwestern States and California, USA. Fire. 2019; 2:17. doi: 10.3390/fire2020017

    AllenI, ChhinS, ZhangJ. Fire and Forest Management in Montane Forests of the Northwestern States and California, USA. Fire. 2019; 2:17. doi: 10.3390/fire2020017, AllenI, ChhinS, ZhangJ. Fire and Forest Management in Montane Forests of the Northwestern States and California, USA. Fire. 2019; 2:17. doi: 10.3390/fire2020017

  • Arne Buechling, C. Tobalske (2011)

    Predictive Habitat Modeling of Rare Plant Species in Pacific Northwest Forests

    Western Journal of Applied Forestry, 26

  • F. Krist, Sheryl Romero. (2015)

    2013-2027 National Insect and Disease Forest Risk Assessment: Summary and data access

    , 209

  • (BoumansR, CostanzaR, FarleyJ, WilsonMA, PortelaR, RotmansJ, et al. Modeling the dynamics of the integrated Earth system and the value of global ecosystem services using the GUMBO model. Ecol Econ. 2002;41: 529–560. doi: 10.1016/S0921-8009(02)00098-8)

    BoumansR, CostanzaR, FarleyJ, WilsonMA, PortelaR, RotmansJ, et al. Modeling the dynamics of the integrated Earth system and the value of global ecosystem services using the GUMBO model. Ecol Econ. 2002;41: 529–560. doi: 10.1016/S0921-8009(02)00098-8

    BoumansR, CostanzaR, FarleyJ, WilsonMA, PortelaR, RotmansJ, et al. Modeling the dynamics of the integrated Earth system and the value of global ecosystem services using the GUMBO model. Ecol Econ. 2002;41: 529–560. doi: 10.1016/S0921-8009(02)00098-8, BoumansR, CostanzaR, FarleyJ, WilsonMA, PortelaR, RotmansJ, et al. Modeling the dynamics of the integrated Earth system and the value of global ecosystem services using the GUMBO model. Ecol Econ. 2002;41: 529–560. doi: 10.1016/S0921-8009(02)00098-8

  • (HanW, YangZ, DiL, MuellerR. CropScape: A web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput Electron Agr. 2012;84: 111–123. doi: 10.1016/j.compag.2012.03.005)

    HanW, YangZ, DiL, MuellerR. CropScape: A web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput Electron Agr. 2012;84: 111–123. doi: 10.1016/j.compag.2012.03.005

    HanW, YangZ, DiL, MuellerR. CropScape: A web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput Electron Agr. 2012;84: 111–123. doi: 10.1016/j.compag.2012.03.005, HanW, YangZ, DiL, MuellerR. CropScape: A web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput Electron Agr. 2012;84: 111–123. doi: 10.1016/j.compag.2012.03.005

  • (2018)

    Pacific Northwest Quantitative Wildfire Risk Assessment: Methods and Results
  • R. Boumans, R. Costanza, J. Farley, M. Wilson, R. Portela, J. Rotmans, F. Villa, M. Grasso (2002)

    SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services: Integrating Economic and Ecological Perspectives Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model
  • (MadrigalJ, MarinoE, GuijarroM, HernandoC, DíezC. Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning, Ann of Forest Sci. 2012;69: 387–397. doi: 10.1007/s13595-011-0165-0)

    MadrigalJ, MarinoE, GuijarroM, HernandoC, DíezC. Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning, Ann of Forest Sci. 2012;69: 387–397. doi: 10.1007/s13595-011-0165-0

    MadrigalJ, MarinoE, GuijarroM, HernandoC, DíezC. Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning, Ann of Forest Sci. 2012;69: 387–397. doi: 10.1007/s13595-011-0165-0, MadrigalJ, MarinoE, GuijarroM, HernandoC, DíezC. Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning, Ann of Forest Sci. 2012;69: 387–397. doi: 10.1007/s13595-011-0165-0

  • James Kagan, Sue Vrilakas, E. Gaines, C. Alton, F. McArthur, K. Walsh, E. Scheuering, J. Christy, Jon Hak, C. Tobalske, A. Weiland, Theresa Koloszar (2004)

    Rare, Threatened and Endangered Species of Oregon
  • Matthew Thompson, J. Haas, Julie Gilbertson-Day, Joe Scott, Paul Langowski, Elise Bowne, D. Calkin (2015)

    Development and application of a geospatial wildfire exposure and risk calculation tool

    Environ. Model. Softw., 63

  • Lindsay Grayson, R. Progar, S. Hood (2017)

    Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds

    Forest Ecology and Management, 399

  • D. Rupp, J. Abatzoglou, P. Mote (2017)

    Projections of 21st century climate of the Columbia River Basin

    Climate Dynamics, 49

  • (Stein BA. States of the Union: Ranking America’s Biodiversity. Arlington, Virginia: NatureServe 2002. 22 pp. https://www.natureserve.org/sites/default/files/publications/files/stateofunions.pdf.)

    Stein BA. States of the Union: Ranking America’s Biodiversity. Arlington, Virginia: NatureServe 2002. 22 pp. https://www.natureserve.org/sites/default/files/publications/files/stateofunions.pdf.

    Stein BA. States of the Union: Ranking America’s Biodiversity. Arlington, Virginia: NatureServe 2002. 22 pp. https://www.natureserve.org/sites/default/files/publications/files/stateofunions.pdf., Stein BA. States of the Union: Ranking America’s Biodiversity. Arlington, Virginia: NatureServe 2002. 22 pp. https://www.natureserve.org/sites/default/files/publications/files/stateofunions.pdf.

  • (Mutch RW, Arno SF, Brown JK, Carlson CE, Ottmar RD, Peterson JL. Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems. Quigley, T.M., ed. General Technical Report 1997 PNW-GTR-310. Portland, OR: USDA Forest Service, Pacific Northwest Research Station. 14 p. 10.2737/PNW-GTR-310.)

    Mutch RW, Arno SF, Brown JK, Carlson CE, Ottmar RD, Peterson JL. Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems. Quigley, T.M., ed. General Technical Report 1997 PNW-GTR-310. Portland, OR: USDA Forest Service, Pacific Northwest Research Station. 14 p. 10.2737/PNW-GTR-310.

    Mutch RW, Arno SF, Brown JK, Carlson CE, Ottmar RD, Peterson JL. Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems. Quigley, T.M., ed. General Technical Report 1997 PNW-GTR-310. Portland, OR: USDA Forest Service, Pacific Northwest Research Station. 14 p. 10.2737/PNW-GTR-310., Mutch RW, Arno SF, Brown JK, Carlson CE, Ottmar RD, Peterson JL. Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems. Quigley, T.M., ed. General Technical Report 1997 PNW-GTR-310. Portland, OR: USDA Forest Service, Pacific Northwest Research Station. 14 p. 10.2737/PNW-GTR-310.

  • (MillerC, O’NeillS, RorigM, AlvaradoE. Air-Quality Challenges of Prescribed Fire in the Complex Terrain and Wildland Urban Interface Surrounding Bend, Oregon. Atmosphere. 2019;10. doi: 10.3390/atmos10090515)

    MillerC, O’NeillS, RorigM, AlvaradoE. Air-Quality Challenges of Prescribed Fire in the Complex Terrain and Wildland Urban Interface Surrounding Bend, Oregon. Atmosphere. 2019;10. doi: 10.3390/atmos10090515

    MillerC, O’NeillS, RorigM, AlvaradoE. Air-Quality Challenges of Prescribed Fire in the Complex Terrain and Wildland Urban Interface Surrounding Bend, Oregon. Atmosphere. 2019;10. doi: 10.3390/atmos10090515, MillerC, O’NeillS, RorigM, AlvaradoE. Air-Quality Challenges of Prescribed Fire in the Complex Terrain and Wildland Urban Interface Surrounding Bend, Oregon. Atmosphere. 2019;10. doi: 10.3390/atmos10090515

  • (WellsN, GoddardA, HayesMJ. A self-calibrating Palmer drought severity index. J Climate2004;17: 2335–2351.)

    WellsN, GoddardA, HayesMJ. A self-calibrating Palmer drought severity index. J Climate2004;17: 2335–2351.

    WellsN, GoddardA, HayesMJ. A self-calibrating Palmer drought severity index. J Climate2004;17: 2335–2351., WellsN, GoddardA, HayesMJ. A self-calibrating Palmer drought severity index. J Climate2004;17: 2335–2351.

  • (Scott, JH, Thompson MP, Calkin DE. A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315 2013. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. 10.2737/rmrs-gtr-315.)

    Scott, JH, Thompson MP, Calkin DE. A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315 2013. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. 10.2737/rmrs-gtr-315.

    Scott, JH, Thompson MP, Calkin DE. A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315 2013. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. 10.2737/rmrs-gtr-315., Scott, JH, Thompson MP, Calkin DE. A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315 2013. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. 10.2737/rmrs-gtr-315.

  • (2017)

    New Venture Fund Project Report, Mapping Gorse along the Southern Oregon Coast
  • (CharnleyS, KellyEC, FischerAP. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ Res Lett. 2020;15, 025007. doi: 10.1088/1748-9326/ab639a)

    CharnleyS, KellyEC, FischerAP. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ Res Lett. 2020;15, 025007. doi: 10.1088/1748-9326/ab639a

    CharnleyS, KellyEC, FischerAP. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ Res Lett. 2020;15, 025007. doi: 10.1088/1748-9326/ab639a, CharnleyS, KellyEC, FischerAP. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ Res Lett. 2020;15, 025007. doi: 10.1088/1748-9326/ab639a

  • A. Nolin (2012)

    Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA

    , 32

  • (Gilbertson-Day JW, Stratton RD, Scott JH, Vogler KC, Brough A. Pacific Northwest Quantitative Wildfire Risk Assessment: Methods and Results, v2 2018, Pyrologix, 90 pp. http://oe.oregonexplorer.info/externalcontent/wildfire/reports/20170428_PNW_Quantitative_Wildfire_Risk_Assessment_Report.pdf.)

    Gilbertson-Day JW, Stratton RD, Scott JH, Vogler KC, Brough A. Pacific Northwest Quantitative Wildfire Risk Assessment: Methods and Results, v2 2018, Pyrologix, 90 pp. http://oe.oregonexplorer.info/externalcontent/wildfire/reports/20170428_PNW_Quantitative_Wildfire_Risk_Assessment_Report.pdf.

    Gilbertson-Day JW, Stratton RD, Scott JH, Vogler KC, Brough A. Pacific Northwest Quantitative Wildfire Risk Assessment: Methods and Results, v2 2018, Pyrologix, 90 pp. http://oe.oregonexplorer.info/externalcontent/wildfire/reports/20170428_PNW_Quantitative_Wildfire_Risk_Assessment_Report.pdf., Gilbertson-Day JW, Stratton RD, Scott JH, Vogler KC, Brough A. Pacific Northwest Quantitative Wildfire Risk Assessment: Methods and Results, v2 2018, Pyrologix, 90 pp. http://oe.oregonexplorer.info/externalcontent/wildfire/reports/20170428_PNW_Quantitative_Wildfire_Risk_Assessment_Report.pdf.

  • (SharpJ & MassCF. Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution, Weather and Forecasting2004;19: 970–992. doi: 10.1175/826.1)

    SharpJ & MassCF. Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution, Weather and Forecasting2004;19: 970–992. doi: 10.1175/826.1

    SharpJ & MassCF. Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution, Weather and Forecasting2004;19: 970–992. doi: 10.1175/826.1, SharpJ & MassCF. Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution, Weather and Forecasting2004;19: 970–992. doi: 10.1175/826.1

  • R. Loehman, R. Keane, Lisa Holsinger, Zhiwei Wu (2017)

    Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    Landscape Ecology, 32

  • (2015)

    The 1990– 2010 wildland-urban interface of the conterminous United States—geospatial data. 2nd Edition
  • D. Azuma, J. Donnegan, D. Gedney (2004)

    Southwest Oregon Biscuit Fire: an analysis of forest resources and fire severity

    , 560

  • (JainP, WangX, FlanniganMD. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int J Wildland Fire2017;26: 1009–1020. doi: 10.1071/WF17008)

    JainP, WangX, FlanniganMD. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int J Wildland Fire2017;26: 1009–1020. doi: 10.1071/WF17008

    JainP, WangX, FlanniganMD. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int J Wildland Fire2017;26: 1009–1020. doi: 10.1071/WF17008, JainP, WangX, FlanniganMD. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int J Wildland Fire2017;26: 1009–1020. doi: 10.1071/WF17008

  • (FosterD. & MayfieldC.Geospatial Resource Integration in Support of Homeland Defense and Security. IJAGR2016;7: 53–63. doi: 10.4018/IJAGR.2016100105)

    FosterD. & MayfieldC.Geospatial Resource Integration in Support of Homeland Defense and Security. IJAGR2016;7: 53–63. doi: 10.4018/IJAGR.2016100105

    FosterD. & MayfieldC.Geospatial Resource Integration in Support of Homeland Defense and Security. IJAGR2016;7: 53–63. doi: 10.4018/IJAGR.2016100105, FosterD. & MayfieldC.Geospatial Resource Integration in Support of Homeland Defense and Security. IJAGR2016;7: 53–63. doi: 10.4018/IJAGR.2016100105

  • J. Elith, Catherine Graham, Robert Anderson, Miroslav Dudı́k, Simon Ferrier, A. Guisan, R. Hijmans, F. Huettmann, J. Leathwick, Anthony Lehmann, Jin Li, Lúcia Lohmann, Bette Loiselle, G. Manion, Craig Moritz, Miguel Nakamura, Yoshinori Nakazawa, J. Overton, A. Peterson, Steven Phillips, Karen Richardson, R. Scachetti-Pereira, R. Schapire, Jorge Soberón, Stephen Williams, M. Wisz, N. Zimmermann (2006)

    Novel methods improve prediction of species' distributions from occurrence data

    Ecography, 29

  • P. Schwarz, Beverly Law, Mathew Williams, James Irvine, M. Kurpius, David Moore (2004)

    Climatic versus biotic constraints on carbon and water fluxes in seasonally drought‐affected ponderosa pine ecosystems

    Global Biogeochemical Cycles, 18

  • W. Meeks, S. Dasgupta (2004)

    Geospatial information utility: an estimation of the relevance of geospatial information to users

    Decis. Support Syst., 38

  • D. Theobald, W. Romme (2007)

    Expansion of the US wildland–urban interface

    Landscape and Urban Planning, 83

  • (AbatzoglouJT, McEvoyDJ, RedmondKT. The West Wide Drought Tracker: Drought Monitoring at Fine Spatial Scales. Bull Am Meteorol Soc. 2017;98: 1815–1820. doi: 10.1175/BAMS-D-16-0193.1)

    AbatzoglouJT, McEvoyDJ, RedmondKT. The West Wide Drought Tracker: Drought Monitoring at Fine Spatial Scales. Bull Am Meteorol Soc. 2017;98: 1815–1820. doi: 10.1175/BAMS-D-16-0193.1

    AbatzoglouJT, McEvoyDJ, RedmondKT. The West Wide Drought Tracker: Drought Monitoring at Fine Spatial Scales. Bull Am Meteorol Soc. 2017;98: 1815–1820. doi: 10.1175/BAMS-D-16-0193.1, AbatzoglouJT, McEvoyDJ, RedmondKT. The West Wide Drought Tracker: Drought Monitoring at Fine Spatial Scales. Bull Am Meteorol Soc. 2017;98: 1815–1820. doi: 10.1175/BAMS-D-16-0193.1

  • J. Madrigal, E. Marino, M. Guijarro, C. Hernando, C. Díez (2011)

    Evaluation of the flammability of gorse (Ulex europaeus L.) managed by prescribed burning

    Annals of Forest Science, 69

  • S. Stehman, J. Wickham, T. Wade, Jonathan Smith (2008)

    Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States

    Photogrammetric Engineering and Remote Sensing, 74

  • A. Schmidt, Whitney Creason, B. Law (2018)

    Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning

    Neural networks : the official journal of the International Neural Network Society, 108

  • David Foster, Chris Mayfield (2016)

    Geospatial Resource Integration in Support of Homeland Defense and Security

    Int. J. Appl. Geospat. Res., 7

  • Matthew Thompson, P. Bowden, A. Brough, Joe Scott, Julie Gilbertson-Day, A. Taylor, Jennifer Anderson, J. Haas (2016)

    Application of Wildfire Risk Assessment Results to Wildfire Response Planning in the Southern Sierra Nevada, California, USA

    Forests, 7

  • M. Heris, N. Foks, K. Bagstad, A. Troy, Zachary Ancona (2020)

    A rasterized building footprint dataset for the United States

    Scientific Data, 7

  • J. Duque, Raúl Ramos, Jordi Suriñach (2007)

    Supervised Regionalization Methods: A Survey

    International Regional Science Review, 30

  • C. Daly, M. Halbleib, Joseph Smith, W. Gibson, Matthew Doggett, G. Taylor, J. Curtis, Phillip Pasteris (2008)

    Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States

    International Journal of Climatology, 28

  • (BayhamJ, BelvalEJ, ThompsonMP, DunnC, StonesiferCS, CalkinDE. Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US. Forests. 2020;11: 169. doi: 10.3390/f11020169)

    BayhamJ, BelvalEJ, ThompsonMP, DunnC, StonesiferCS, CalkinDE. Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US. Forests. 2020;11: 169. doi: 10.3390/f11020169

    BayhamJ, BelvalEJ, ThompsonMP, DunnC, StonesiferCS, CalkinDE. Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US. Forests. 2020;11: 169. doi: 10.3390/f11020169, BayhamJ, BelvalEJ, ThompsonMP, DunnC, StonesiferCS, CalkinDE. Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US. Forests. 2020;11: 169. doi: 10.3390/f11020169

  • (SchwarzPA, LawBE, WilliamsM, IrvineJ, KurpiusM, MooreD. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Global Biochem Cycl. 2004;18, GB4007. doi: 10.1029/2004GB002234)

    SchwarzPA, LawBE, WilliamsM, IrvineJ, KurpiusM, MooreD. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Global Biochem Cycl. 2004;18, GB4007. doi: 10.1029/2004GB002234

    SchwarzPA, LawBE, WilliamsM, IrvineJ, KurpiusM, MooreD. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Global Biochem Cycl. 2004;18, GB4007. doi: 10.1029/2004GB002234, SchwarzPA, LawBE, WilliamsM, IrvineJ, KurpiusM, MooreD. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Global Biochem Cycl. 2004;18, GB4007. doi: 10.1029/2004GB002234

  • Matthew Dietz, R. Belote, J. Gage, Beth Hahn (2020)

    An assessment of vulnerable wildlife, their habitats, and protected areas in the contiguous United States

    Biological Conservation, 248

  • (DrurySA, RauscherHM, BanwellEM, HuangS, LacezzoTL. The Interagency Fuels Treatment Decision Support System: Functionality for Fuels Treatment Planning. Fire Ecol. 2016;12: 103–123. doi: 10.4996/fireecology.1201103)

    DrurySA, RauscherHM, BanwellEM, HuangS, LacezzoTL. The Interagency Fuels Treatment Decision Support System: Functionality for Fuels Treatment Planning. Fire Ecol. 2016;12: 103–123. doi: 10.4996/fireecology.1201103

    DrurySA, RauscherHM, BanwellEM, HuangS, LacezzoTL. The Interagency Fuels Treatment Decision Support System: Functionality for Fuels Treatment Planning. Fire Ecol. 2016;12: 103–123. doi: 10.4996/fireecology.1201103, DrurySA, RauscherHM, BanwellEM, HuangS, LacezzoTL. The Interagency Fuels Treatment Decision Support System: Functionality for Fuels Treatment Planning. Fire Ecol. 2016;12: 103–123. doi: 10.4996/fireecology.1201103

  • Larry Bradshaw, E. McCormick (2000)

    FireFamily Plus user's guide, Version 2.0

    , 67

  • (MeeksWL & DasguptaS. Geospatial information utility: an estimation of the relevance of geospatial information to users. Decis Support Syst. 2004;38: 47–63. doi: 10.1016/S0167-9236(03)00076-9)

    MeeksWL & DasguptaS. Geospatial information utility: an estimation of the relevance of geospatial information to users. Decis Support Syst. 2004;38: 47–63. doi: 10.1016/S0167-9236(03)00076-9

    MeeksWL & DasguptaS. Geospatial information utility: an estimation of the relevance of geospatial information to users. Decis Support Syst. 2004;38: 47–63. doi: 10.1016/S0167-9236(03)00076-9, MeeksWL & DasguptaS. Geospatial information utility: an estimation of the relevance of geospatial information to users. Decis Support Syst. 2004;38: 47–63. doi: 10.1016/S0167-9236(03)00076-9

  • (VoglerKC, AgerAA, DayMA, JenningsM, BaileyJD. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives. Forests. 2015;6: 4403–4420. doi: 10.3390/f6124375)

    VoglerKC, AgerAA, DayMA, JenningsM, BaileyJD. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives. Forests. 2015;6: 4403–4420. doi: 10.3390/f6124375

    VoglerKC, AgerAA, DayMA, JenningsM, BaileyJD. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives. Forests. 2015;6: 4403–4420. doi: 10.3390/f6124375, VoglerKC, AgerAA, DayMA, JenningsM, BaileyJD. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives. Forests. 2015;6: 4403–4420. doi: 10.3390/f6124375

  • Spatial dataset of probabilistic wildfire risk components for the conterminous United States. 1st Edition. Fort Collins, CO 2016: Forest Service Research Data Archive
  • (WeiseDR & BigingGS. Effects of wind velocity and slope on flame properties. Can J Forest Res. 1996;26: 1849–1858.)

    WeiseDR & BigingGS. Effects of wind velocity and slope on flame properties. Can J Forest Res. 1996;26: 1849–1858.

    WeiseDR & BigingGS. Effects of wind velocity and slope on flame properties. Can J Forest Res. 1996;26: 1849–1858., WeiseDR & BigingGS. Effects of wind velocity and slope on flame properties. Can J Forest Res. 1996;26: 1849–1858.

  • M. Jennings (2004)

    Gap analysis: concepts, methods, and recent results*

    Landscape Ecology, 15

  • (2014)

    National Register of Historic Places. National Register properties are located throughout the United States and their associated territories around the globe
  • J. Bayham, Erin Belval, Matthew Thompson, Christopher Dunn, Crystal Stonesifer, D. Calkin (2020)

    Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US

    Forests, 11

  • (HessburgPF, AgeeJK, FranklinJF. Dry forests and wildland fires of the inland Northwest USA: Contrasting the landscape ecology of the pre-settlement and modern eras. For Ecol Manage. 2005;211: 117–139.)

    HessburgPF, AgeeJK, FranklinJF. Dry forests and wildland fires of the inland Northwest USA: Contrasting the landscape ecology of the pre-settlement and modern eras. For Ecol Manage. 2005;211: 117–139.

    HessburgPF, AgeeJK, FranklinJF. Dry forests and wildland fires of the inland Northwest USA: Contrasting the landscape ecology of the pre-settlement and modern eras. For Ecol Manage. 2005;211: 117–139., HessburgPF, AgeeJK, FranklinJF. Dry forests and wildland fires of the inland Northwest USA: Contrasting the landscape ecology of the pre-settlement and modern eras. For Ecol Manage. 2005;211: 117–139.

  • (Sanborn Map Inc. West Wide Wildfire Risk Assessment Final Report March 31, 2013. 106 pp. https://www.thewflc.org/sites/default/files/WWA_FinalReport_3-6-2016-1.pdf.)

    Sanborn Map Inc. West Wide Wildfire Risk Assessment Final Report March 31, 2013. 106 pp. https://www.thewflc.org/sites/default/files/WWA_FinalReport_3-6-2016-1.pdf.

    Sanborn Map Inc. West Wide Wildfire Risk Assessment Final Report March 31, 2013. 106 pp. https://www.thewflc.org/sites/default/files/WWA_FinalReport_3-6-2016-1.pdf., Sanborn Map Inc. West Wide Wildfire Risk Assessment Final Report March 31, 2013. 106 pp. https://www.thewflc.org/sites/default/files/WWA_FinalReport_3-6-2016-1.pdf.

  • (HigueraPE & AbatzoglouJT. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob Change Biol. 2020. doi: 10.1111/gcb.1538833048429)

    HigueraPE & AbatzoglouJT. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob Change Biol. 2020. doi: 10.1111/gcb.1538833048429, HigueraPE & AbatzoglouJT. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob Change Biol. 2020. doi: 10.1111/gcb.1538833048429

  • (DietzMS, BeloteRT, GageJ, HahnBA. An assessment of vulnerable wildlife, their habitats, and protected areas in the contiguous United States, Biol Conserv. 2020;248, doi: 10.1016/j.biocon.2020.108646)

    DietzMS, BeloteRT, GageJ, HahnBA. An assessment of vulnerable wildlife, their habitats, and protected areas in the contiguous United States, Biol Conserv. 2020;248, doi: 10.1016/j.biocon.2020.108646

    DietzMS, BeloteRT, GageJ, HahnBA. An assessment of vulnerable wildlife, their habitats, and protected areas in the contiguous United States, Biol Conserv. 2020;248, doi: 10.1016/j.biocon.2020.108646, DietzMS, BeloteRT, GageJ, HahnBA. An assessment of vulnerable wildlife, their habitats, and protected areas in the contiguous United States, Biol Conserv. 2020;248, doi: 10.1016/j.biocon.2020.108646

  • M. Rollins (2009)

    LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment

    International Journal of Wildland Fire, 18

  • (HerisMP, FoksNL, BagstadKJ, TroyA, & AnconaZH. A rasterized building footprint dataset for the United States. Science and Data. 2020;7: 207. doi: 10.1038/s41597-020-0542-332601298)

    HerisMP, FoksNL, BagstadKJ, TroyA, & AnconaZH. A rasterized building footprint dataset for the United States. Science and Data. 2020;7: 207. doi: 10.1038/s41597-020-0542-332601298

    HerisMP, FoksNL, BagstadKJ, TroyA, & AnconaZH. A rasterized building footprint dataset for the United States. Science and Data. 2020;7: 207. doi: 10.1038/s41597-020-0542-332601298, HerisMP, FoksNL, BagstadKJ, TroyA, & AnconaZH. A rasterized building footprint dataset for the United States. Science and Data. 2020;7: 207. doi: 10.1038/s41597-020-0542-332601298

  • (JenningsMD. Gap analysis: concepts, methods, and recent results. Landscape Ecol. 2000;15: 5–20. doi: 10.1023/A:1008184408300)

    JenningsMD. Gap analysis: concepts, methods, and recent results. Landscape Ecol. 2000;15: 5–20. doi: 10.1023/A:1008184408300

    JenningsMD. Gap analysis: concepts, methods, and recent results. Landscape Ecol. 2000;15: 5–20. doi: 10.1023/A:1008184408300, JenningsMD. Gap analysis: concepts, methods, and recent results. Landscape Ecol. 2000;15: 5–20. doi: 10.1023/A:1008184408300

  • M. Hibbard, S. Lurie, Aniko Drlik-Muehleck (2019)

    The New Natural Resource Economy: Implementing the healthy environment/healthy economy paradigm in eastern Oregon

    Community Development, 50

  • Zhengwei Yang (2012)

    CropScape: A Web service based application for exploring and disseminating US conterminous geospatia

    Computers and Electronics in Agriculture

  • (KoldenCA. We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire. 2019;2: 30. doi: 10.3390/fire2020030)

    KoldenCA. We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire. 2019;2: 30. doi: 10.3390/fire2020030

    KoldenCA. We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire. 2019;2: 30. doi: 10.3390/fire2020030, KoldenCA. We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire. 2019;2: 30. doi: 10.3390/fire2020030

  • (ScastaJD, WeirJR, StambaughMC. Droughts and Wildfires in Western U.S. Rangelands, Rangelands. 2016;38: 197–203. doi: 10.1016/j.rala.2016.06.003)

    ScastaJD, WeirJR, StambaughMC. Droughts and Wildfires in Western U.S. Rangelands, Rangelands. 2016;38: 197–203. doi: 10.1016/j.rala.2016.06.003

    ScastaJD, WeirJR, StambaughMC. Droughts and Wildfires in Western U.S. Rangelands, Rangelands. 2016;38: 197–203. doi: 10.1016/j.rala.2016.06.003, ScastaJD, WeirJR, StambaughMC. Droughts and Wildfires in Western U.S. Rangelands, Rangelands. 2016;38: 197–203. doi: 10.1016/j.rala.2016.06.003

  • X. Qu, Alex Hall (2006)

    Assessing Snow Albedo Feedback in Simulated Climate Change

    Journal of Climate, 19

  • (WesterlingAL, HidalgoHG, CayanDR, SwetnamTW. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science. 2006;18: 940–943. doi: 10.1126/science.112883416825536)

    WesterlingAL, HidalgoHG, CayanDR, SwetnamTW. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science. 2006;18: 940–943. doi: 10.1126/science.112883416825536

    WesterlingAL, HidalgoHG, CayanDR, SwetnamTW. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science. 2006;18: 940–943. doi: 10.1126/science.112883416825536, WesterlingAL, HidalgoHG, CayanDR, SwetnamTW. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science. 2006;18: 940–943. doi: 10.1126/science.112883416825536

  • (HalofskyJE, PetersonDL, HarveyBJ. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020;16. doi: 10.1186/s42408-019-0062-8)

    HalofskyJE, PetersonDL, HarveyBJ. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020;16. doi: 10.1186/s42408-019-0062-8

    HalofskyJE, PetersonDL, HarveyBJ. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020;16. doi: 10.1186/s42408-019-0062-8, HalofskyJE, PetersonDL, HarveyBJ. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020;16. doi: 10.1186/s42408-019-0062-8

  • V. Radeloff, D. Helmers, H. Kramer, M. Mockrin, Patricia Alexandre, Avi Bar‐Massada, V. Butsic, T. Hawbaker, S. Martinuzzi, A. Syphard, Susan Stewart (2018)

    Rapid growth of the US wildland-urban interface raises wildfire risk

    Proceedings of the National Academy of Sciences, 115

  • G. McCaskill (2018)

    Forests

  • (FlanniganM, CantinAS, de GrootWJ, WottonM, NewberyA, GowmanLM. Global wildland fire season severity in the 21st century. Forest Ecol Manage. 2013;294: 54–61. doi: 10.1016/j.foreco.2012.10.022)

    FlanniganM, CantinAS, de GrootWJ, WottonM, NewberyA, GowmanLM. Global wildland fire season severity in the 21st century. Forest Ecol Manage. 2013;294: 54–61. doi: 10.1016/j.foreco.2012.10.022

    FlanniganM, CantinAS, de GrootWJ, WottonM, NewberyA, GowmanLM. Global wildland fire season severity in the 21st century. Forest Ecol Manage. 2013;294: 54–61. doi: 10.1016/j.foreco.2012.10.022, FlanniganM, CantinAS, de GrootWJ, WottonM, NewberyA, GowmanLM. Global wildland fire season severity in the 21st century. Forest Ecol Manage. 2013;294: 54–61. doi: 10.1016/j.foreco.2012.10.022

  • (DalyC, HalbleibM, SmithJ, GibsonW, DoggettMK, TaylorGH, et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol. 2008;28: 2031–2064. doi: 10.1002/joc.1688)

    DalyC, HalbleibM, SmithJ, GibsonW, DoggettMK, TaylorGH, et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol. 2008;28: 2031–2064. doi: 10.1002/joc.1688

    DalyC, HalbleibM, SmithJ, GibsonW, DoggettMK, TaylorGH, et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol. 2008;28: 2031–2064. doi: 10.1002/joc.1688, DalyC, HalbleibM, SmithJ, GibsonW, DoggettMK, TaylorGH, et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol. 2008;28: 2031–2064. doi: 10.1002/joc.1688

  • (DeGrootR, WilsonMA, BoumansRMJ. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ. 2002;41: 393–408. doi: 10.1016/S0921-8009(02)00089-7)

    DeGrootR, WilsonMA, BoumansRMJ. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ. 2002;41: 393–408. doi: 10.1016/S0921-8009(02)00089-7

    DeGrootR, WilsonMA, BoumansRMJ. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ. 2002;41: 393–408. doi: 10.1016/S0921-8009(02)00089-7, DeGrootR, WilsonMA, BoumansRMJ. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ. 2002;41: 393–408. doi: 10.1016/S0921-8009(02)00089-7

  • J. Picotte, D. Dockter, Jordan Long, B. Tolk, A. Davidson, B. Peterson (2019)

    LANDFIRE Remap Prototype Mapping Effort: Developing a New Framework for Mapping Vegetation Classification, Change, and Structure

    Fire

  • Z. Holden, A. Swanson, C. Luce, W. Jolly, M. Maneta, J. Oyler, D. Warren, R. Parsons, David Affleck (2018)

    Decreasing fire season precipitation increased recent western US forest wildfire activity

    Proceedings of the National Academy of Sciences, 115

  • M. Flannigan, A. Cantin, W. Groot, M. Wotton, Alison Newbery, Lynn Gowman (2013)

    Global wildland fire season severity in the 21st century

    Forest Ecology and Management, 294

  • R. Fleming, J. Candau, R. McAlpine (2002)

    Landscape-Scale Analysis of Interactions between Insect Defoliation and Forest Fire in Central Canada

    Climatic Change, 55

  • (ThompsonMP, HaasJ, Gilbertson-DayJW, ScottJH, LangowskiP, BowneE, et al. Development and application of a geospatial wildfire exposure and risk calculation tool. Environ Model Softw. 2015;63, 61–72. doi: 10.1016/j.envsoft.2014.09.018)

    ThompsonMP, HaasJ, Gilbertson-DayJW, ScottJH, LangowskiP, BowneE, et al. Development and application of a geospatial wildfire exposure and risk calculation tool. Environ Model Softw. 2015;63, 61–72. doi: 10.1016/j.envsoft.2014.09.018

    ThompsonMP, HaasJ, Gilbertson-DayJW, ScottJH, LangowskiP, BowneE, et al. Development and application of a geospatial wildfire exposure and risk calculation tool. Environ Model Softw. 2015;63, 61–72. doi: 10.1016/j.envsoft.2014.09.018, ThompsonMP, HaasJ, Gilbertson-DayJW, ScottJH, LangowskiP, BowneE, et al. Development and application of a geospatial wildfire exposure and risk calculation tool. Environ Model Softw. 2015;63, 61–72. doi: 10.1016/j.envsoft.2014.09.018

  • (CreutzburgMG, HalofskyJE, HalofskyJS, ChristopherTA. Climate Change and Land Management in the Rangelands of Central Oregon. Environ Manage. 2015;55: 43–55. doi: 10.1007/s00267-014-0362-325216989)

    CreutzburgMG, HalofskyJE, HalofskyJS, ChristopherTA. Climate Change and Land Management in the Rangelands of Central Oregon. Environ Manage. 2015;55: 43–55. doi: 10.1007/s00267-014-0362-325216989

    CreutzburgMG, HalofskyJE, HalofskyJS, ChristopherTA. Climate Change and Land Management in the Rangelands of Central Oregon. Environ Manage. 2015;55: 43–55. doi: 10.1007/s00267-014-0362-325216989, CreutzburgMG, HalofskyJE, HalofskyJS, ChristopherTA. Climate Change and Land Management in the Rangelands of Central Oregon. Environ Manage. 2015;55: 43–55. doi: 10.1007/s00267-014-0362-325216989

  • (ThompsonMP, RileyKL, LoefflerD, HaasJR. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests. 2017;8: 469. doi: 10.3390/f8120469)

    ThompsonMP, RileyKL, LoefflerD, HaasJR. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests. 2017;8: 469. doi: 10.3390/f8120469

    ThompsonMP, RileyKL, LoefflerD, HaasJR. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests. 2017;8: 469. doi: 10.3390/f8120469, ThompsonMP, RileyKL, LoefflerD, HaasJR. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests. 2017;8: 469. doi: 10.3390/f8120469

  • (AbatzoglouJT & WilliamsAP. Impact of anthropogenic climate change on wildfire across western US forests. PNAS. 2016;113: 11770–11775. doi: 10.1073/pnas.160717111327791053)

    AbatzoglouJT & WilliamsAP. Impact of anthropogenic climate change on wildfire across western US forests. PNAS. 2016;113: 11770–11775. doi: 10.1073/pnas.160717111327791053

    AbatzoglouJT & WilliamsAP. Impact of anthropogenic climate change on wildfire across western US forests. PNAS. 2016;113: 11770–11775. doi: 10.1073/pnas.160717111327791053, AbatzoglouJT & WilliamsAP. Impact of anthropogenic climate change on wildfire across western US forests. PNAS. 2016;113: 11770–11775. doi: 10.1073/pnas.160717111327791053

  • (HammerRB, RadeloffVC, FriedJS, StewartSI. Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington. Int J Wildland Fire. 2007;16: 255–265. doi: 10.1071/WF05077)

    HammerRB, RadeloffVC, FriedJS, StewartSI. Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington. Int J Wildland Fire. 2007;16: 255–265. doi: 10.1071/WF05077

    HammerRB, RadeloffVC, FriedJS, StewartSI. Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington. Int J Wildland Fire. 2007;16: 255–265. doi: 10.1071/WF05077, HammerRB, RadeloffVC, FriedJS, StewartSI. Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington. Int J Wildland Fire. 2007;16: 255–265. doi: 10.1071/WF05077

  • Matthew Thompson, D. MacGregor, D. Calkin, A. Taylor, S. Charnley (2020)

    Fostering collective action to reduce wildfire risk across property boundaries in the American West

    Environmental Research Letters, 15

  • (Oregon Department of Forestry. Final ODF fire report for 2020 fire season. October 19, 2020. https://odfwildfire.wpengine.com/2020/10/19/final-odf-fire-report-for-2020-fire-season.)

    Oregon Department of Forestry. Final ODF fire report for 2020 fire season. October 19, 2020. https://odfwildfire.wpengine.com/2020/10/19/final-odf-fire-report-for-2020-fire-season.

    Oregon Department of Forestry. Final ODF fire report for 2020 fire season. October 19, 2020. https://odfwildfire.wpengine.com/2020/10/19/final-odf-fire-report-for-2020-fire-season., Oregon Department of Forestry. Final ODF fire report for 2020 fire season. October 19, 2020. https://odfwildfire.wpengine.com/2020/10/19/final-odf-fire-report-for-2020-fire-season.

  • A. Westerling, A. Westerling, H. Hidalgo, D. Cayan, D. Cayan, T. Swetnam (2006)

    Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

    Science, 313

  • D. Weise, G. Biging (1996)

    Effects of wind velocity and slope on flame properties

    Canadian Journal of Forest Research, 26

  • (PicotteJJ, BhattaraiK, HowardD., et al. Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products. Fire Ecol. 2020:16. doi: 10.1186/s42408-020-00076-y)

    PicotteJJ, BhattaraiK, HowardD., et al. Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products. Fire Ecol. 2020:16. doi: 10.1186/s42408-020-00076-y

    PicotteJJ, BhattaraiK, HowardD., et al. Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products. Fire Ecol. 2020:16. doi: 10.1186/s42408-020-00076-y, PicotteJJ, BhattaraiK, HowardD., et al. Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products. Fire Ecol. 2020:16. doi: 10.1186/s42408-020-00076-y

  • P. Jain, Xianli Wang, M. Flannigan (2017)

    Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015

    International Journal of Wildland Fire, 26

  • (2002)

  • (2017)

    USDA National Agricultural Statistics Service Cropland Data Layer
  • (2002)

    States of the Union: Ranking America’s Biodiversity
  • (AgerAA, DayMA, VoglerK. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J Environ Manage. 2016;176: 157–168. doi: 10.1016/j.jenvman.2016.01.03327033166)

    AgerAA, DayMA, VoglerK. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J Environ Manage. 2016;176: 157–168. doi: 10.1016/j.jenvman.2016.01.03327033166

    AgerAA, DayMA, VoglerK. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J Environ Manage. 2016;176: 157–168. doi: 10.1016/j.jenvman.2016.01.03327033166, AgerAA, DayMA, VoglerK. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J Environ Manage. 2016;176: 157–168. doi: 10.1016/j.jenvman.2016.01.03327033166

  • J. Abatzoglou, A. Williams (2016)

    Impact of anthropogenic climate change on wildfire across western US forests

    Proceedings of the National Academy of Sciences, 113

  • (HorelJD & DongX. An Evaluation of the Distribution of Remote Automated Weather Stations (RAWS). J Appl Meteor Climatol. 2010;49: 1563–1578. doi: 10.1175/2010JAMC2397.1)

    HorelJD & DongX. An Evaluation of the Distribution of Remote Automated Weather Stations (RAWS). J Appl Meteor Climatol. 2010;49: 1563–1578. doi: 10.1175/2010JAMC2397.1

    HorelJD & DongX. An Evaluation of the Distribution of Remote Automated Weather Stations (RAWS). J Appl Meteor Climatol. 2010;49: 1563–1578. doi: 10.1175/2010JAMC2397.1, HorelJD & DongX. An Evaluation of the Distribution of Remote Automated Weather Stations (RAWS). J Appl Meteor Climatol. 2010;49: 1563–1578. doi: 10.1175/2010JAMC2397.1

  • W. Davis, T. Simon (1995)

    Biological assessment and criteria : tools for water resource planning and decision making
  • (HibbardM, LurieS, Drlik-MuehleckA. The New Natural Resource Economy: Implementing the healthy environment/healthy economy paradigm in eastern Oregon. Community Dev J. 2019;50: 34–50. doi: 10.1080/15575330.2019.1567565)

    HibbardM, LurieS, Drlik-MuehleckA. The New Natural Resource Economy: Implementing the healthy environment/healthy economy paradigm in eastern Oregon. Community Dev J. 2019;50: 34–50. doi: 10.1080/15575330.2019.1567565

    HibbardM, LurieS, Drlik-MuehleckA. The New Natural Resource Economy: Implementing the healthy environment/healthy economy paradigm in eastern Oregon. Community Dev J. 2019;50: 34–50. doi: 10.1080/15575330.2019.1567565, HibbardM, LurieS, Drlik-MuehleckA. The New Natural Resource Economy: Implementing the healthy environment/healthy economy paradigm in eastern Oregon. Community Dev J. 2019;50: 34–50. doi: 10.1080/15575330.2019.1567565

  • (McEvoyA, KernsBK, KimJB. Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes. Forests. 2021; 12:934. doi: 10.3390/f12070934)

    McEvoyA, KernsBK, KimJB. Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes. Forests. 2021; 12:934. doi: 10.3390/f12070934

    McEvoyA, KernsBK, KimJB. Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes. Forests. 2021; 12:934. doi: 10.3390/f12070934, McEvoyA, KernsBK, KimJB. Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes. Forests. 2021; 12:934. doi: 10.3390/f12070934

  • M. Finney (2006)

    An Overview of FlamMap Fire Modeling Capabilities

    , 041

  • David Davies, D. Bouldin (1979)

    A Cluster Separation Measure

    IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1

  • S. Setterfield, Natalie Rossiter-Rachor, M. Douglas, L. Wainger, Aaron Petty, Piers Barrow, I. Shepherd, K. Ferdinands (2013)

    Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale

    PLoS ONE, 8

  • (Leavell D, Markus A, Bienz C, Carlsen K, Davis EJ, Douglas M, et al. Planning and Implementing Cross-boundary, Landscape-scale Restoration and Wildfire Risk Reduction Projects—A Guide to Achieving the Goals of the National Cohesive Wildland Fire Management Strategy. Oregon State University, University of Idaho, Washington State University PNW 707. 2018, 115 pp. https://co-co.org/wp-content/uploads/2020/07/CrossBoundaryLandscapeScaleProjects.pdfhttps://catalog.extension.oregonstate.edu/ pnw707.)

    Leavell D, Markus A, Bienz C, Carlsen K, Davis EJ, Douglas M, et al. Planning and Implementing Cross-boundary, Landscape-scale Restoration and Wildfire Risk Reduction Projects—A Guide to Achieving the Goals of the National Cohesive Wildland Fire Management Strategy. Oregon State University, University of Idaho, Washington State University PNW 707. 2018, 115 pp. https://co-co.org/wp-content/uploads/2020/07/CrossBoundaryLandscapeScaleProjects.pdfhttps://catalog.extension.oregonstate.edu/ pnw707.

    Leavell D, Markus A, Bienz C, Carlsen K, Davis EJ, Douglas M, et al. Planning and Implementing Cross-boundary, Landscape-scale Restoration and Wildfire Risk Reduction Projects—A Guide to Achieving the Goals of the National Cohesive Wildland Fire Management Strategy. Oregon State University, University of Idaho, Washington State University PNW 707. 2018, 115 pp. https://co-co.org/wp-content/uploads/2020/07/CrossBoundaryLandscapeScaleProjects.pdfhttps://catalog.extension.oregonstate.edu/ pnw707., Leavell D, Markus A, Bienz C, Carlsen K, Davis EJ, Douglas M, et al. Planning and Implementing Cross-boundary, Landscape-scale Restoration and Wildfire Risk Reduction Projects—A Guide to Achieving the Goals of the National Cohesive Wildland Fire Management Strategy. Oregon State University, University of Idaho, Washington State University PNW 707. 2018, 115 pp. https://co-co.org/wp-content/uploads/2020/07/CrossBoundaryLandscapeScaleProjects.pdfhttps://catalog.extension.oregonstate.edu/ pnw707.

  • (ElithJ, GrahamH, AndersonP, DudikM, FerrierS, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography2006;29: 129–151. doi: 10.1111/j.2006.0906-7590.04596.x)

    ElithJ, GrahamH, AndersonP, DudikM, FerrierS, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography2006;29: 129–151. doi: 10.1111/j.2006.0906-7590.04596.x

    ElithJ, GrahamH, AndersonP, DudikM, FerrierS, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography2006;29: 129–151. doi: 10.1111/j.2006.0906-7590.04596.x, ElithJ, GrahamH, AndersonP, DudikM, FerrierS, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography2006;29: 129–151. doi: 10.1111/j.2006.0906-7590.04596.x

  • J. Sharp, C. Mass (2004)

    Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution

    Weather and Forecasting, 19

  • (SchmidtA, CreasonW, LawB. Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning. Neural Netw. 2018;108: 97–113. doi: 10.1016/j.neunet.2018.08.00430173057)

    SchmidtA, CreasonW, LawB. Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning. Neural Netw. 2018;108: 97–113. doi: 10.1016/j.neunet.2018.08.00430173057

    SchmidtA, CreasonW, LawB. Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning. Neural Netw. 2018;108: 97–113. doi: 10.1016/j.neunet.2018.08.00430173057, SchmidtA, CreasonW, LawB. Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning. Neural Netw. 2018;108: 97–113. doi: 10.1016/j.neunet.2018.08.00430173057

  • (StehmanS, WickhamJD, WadeTG, SmithJ. Designing a Multi-Objective Multi-Support Accuracy Assessment of the 2001 National Land Cover Data (NLCD 2001) of the Conterminous United States. Photogramm Eng Remote Sensing. 2008;74: 1561–1571.)

    StehmanS, WickhamJD, WadeTG, SmithJ. Designing a Multi-Objective Multi-Support Accuracy Assessment of the 2001 National Land Cover Data (NLCD 2001) of the Conterminous United States. Photogramm Eng Remote Sensing. 2008;74: 1561–1571.

    StehmanS, WickhamJD, WadeTG, SmithJ. Designing a Multi-Objective Multi-Support Accuracy Assessment of the 2001 National Land Cover Data (NLCD 2001) of the Conterminous United States. Photogramm Eng Remote Sensing. 2008;74: 1561–1571., StehmanS, WickhamJD, WadeTG, SmithJ. Designing a Multi-Objective Multi-Support Accuracy Assessment of the 2001 National Land Cover Data (NLCD 2001) of the Conterminous United States. Photogramm Eng Remote Sensing. 2008;74: 1561–1571.

  • Andy Mcevoy, B. Kerns, John Kim (2021)

    Hazards of Risk: Identifying Plausible Community Wildfire Disasters in Low-Frequency Fire Regimes

    Forests

  • (PicotteJJ, DockterD, LongJ, TolkB, DavidsonA, PetersonB. LANDFIRE Remap Prototype Mapping Effort: Developing a New Framework for Mapping Vegetation Classification, Change, and Structure. Fire. 2019;2.)

    PicotteJJ, DockterD, LongJ, TolkB, DavidsonA, PetersonB. LANDFIRE Remap Prototype Mapping Effort: Developing a New Framework for Mapping Vegetation Classification, Change, and Structure. Fire. 2019;2.

    PicotteJJ, DockterD, LongJ, TolkB, DavidsonA, PetersonB. LANDFIRE Remap Prototype Mapping Effort: Developing a New Framework for Mapping Vegetation Classification, Change, and Structure. Fire. 2019;2., PicotteJJ, DockterD, LongJ, TolkB, DavidsonA, PetersonB. LANDFIRE Remap Prototype Mapping Effort: Developing a New Framework for Mapping Vegetation Classification, Change, and Structure. Fire. 2019;2.

  • (Krist FJ, Ellenwood JR, Woods ME, McMahan AJ, Cowardin JP, Ryerson DE, et al. 2013–2027 National Insect and Disease Forest Risk Assessment: Summary and data access. Chapter 6 in K.M. Potter and B.L. Conkling, eds., Forest Health Monitoring: National Status, Trends and Analysis, 2014. General Technical Report SRS-209. Asheville, North Carolina: U.S. Department of Agriculture, 2015, Forest Service, Southern Research Station. p. 87–92. https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs209/gtr_srs209_06.pdf.)

    Krist FJ, Ellenwood JR, Woods ME, McMahan AJ, Cowardin JP, Ryerson DE, et al. 2013–2027 National Insect and Disease Forest Risk Assessment: Summary and data access. Chapter 6 in K.M. Potter and B.L. Conkling, eds., Forest Health Monitoring: National Status, Trends and Analysis, 2014. General Technical Report SRS-209. Asheville, North Carolina: U.S. Department of Agriculture, 2015, Forest Service, Southern Research Station. p. 87–92. https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs209/gtr_srs209_06.pdf.

    Krist FJ, Ellenwood JR, Woods ME, McMahan AJ, Cowardin JP, Ryerson DE, et al. 2013–2027 National Insect and Disease Forest Risk Assessment: Summary and data access. Chapter 6 in K.M. Potter and B.L. Conkling, eds., Forest Health Monitoring: National Status, Trends and Analysis, 2014. General Technical Report SRS-209. Asheville, North Carolina: U.S. Department of Agriculture, 2015, Forest Service, Southern Research Station. p. 87–92. https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs209/gtr_srs209_06.pdf., Krist FJ, Ellenwood JR, Woods ME, McMahan AJ, Cowardin JP, Ryerson DE, et al. 2013–2027 National Insect and Disease Forest Risk Assessment: Summary and data access. Chapter 6 in K.M. Potter and B.L. Conkling, eds., Forest Health Monitoring: National Status, Trends and Analysis, 2014. General Technical Report SRS-209. Asheville, North Carolina: U.S. Department of Agriculture, 2015, Forest Service, Southern Research Station. p. 87–92. https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs209/gtr_srs209_06.pdf.

  • (USDA National Agricultural Statistics Service Cropland Data Layer. 2019, 2018, 2017. Published crop-specific data layer. https://nassgeodata.gmu.edu/CropScape.)

    USDA National Agricultural Statistics Service Cropland Data Layer. 2019, 2018, 2017. Published crop-specific data layer. https://nassgeodata.gmu.edu/CropScape.

    USDA National Agricultural Statistics Service Cropland Data Layer. 2019, 2018, 2017. Published crop-specific data layer. https://nassgeodata.gmu.edu/CropScape., USDA National Agricultural Statistics Service Cropland Data Layer. 2019, 2018, 2017. Published crop-specific data layer. https://nassgeodata.gmu.edu/CropScape.

  • (StewartSI, RadeloffVC, HammerRB, HawbakerTJ. Defining the Wildland–Urban Interface, J Forest. 2007;105: 201–207.)

    StewartSI, RadeloffVC, HammerRB, HawbakerTJ. Defining the Wildland–Urban Interface, J Forest. 2007;105: 201–207.

    StewartSI, RadeloffVC, HammerRB, HawbakerTJ. Defining the Wildland–Urban Interface, J Forest. 2007;105: 201–207., StewartSI, RadeloffVC, HammerRB, HawbakerTJ. Defining the Wildland–Urban Interface, J Forest. 2007;105: 201–207.

  • (RadeloffVC, HelmersDP, KramerHA, MockrinMH, AlexandrePM, Bar-MassadaA, et al. Rapid growth of the US wildland-urban interface raises wildfire risk. PNAS. 2018;115: 3314–3319. doi: 10.1073/pnas.171885011529531054)

    RadeloffVC, HelmersDP, KramerHA, MockrinMH, AlexandrePM, Bar-MassadaA, et al. Rapid growth of the US wildland-urban interface raises wildfire risk. PNAS. 2018;115: 3314–3319. doi: 10.1073/pnas.171885011529531054

    RadeloffVC, HelmersDP, KramerHA, MockrinMH, AlexandrePM, Bar-MassadaA, et al. Rapid growth of the US wildland-urban interface raises wildfire risk. PNAS. 2018;115: 3314–3319. doi: 10.1073/pnas.171885011529531054, RadeloffVC, HelmersDP, KramerHA, MockrinMH, AlexandrePM, Bar-MassadaA, et al. Rapid growth of the US wildland-urban interface raises wildfire risk. PNAS. 2018;115: 3314–3319. doi: 10.1073/pnas.171885011529531054

  • (RodmanLA, WinterkampJ, EdminsterC, ColmanJJ, SmithWS. Coupled influences of topography and wind on wildland fire behavior. Int J Wildland Fire. 2007;16: 183–195. doi: 10.1071/WF06078)

    RodmanLA, WinterkampJ, EdminsterC, ColmanJJ, SmithWS. Coupled influences of topography and wind on wildland fire behavior. Int J Wildland Fire. 2007;16: 183–195. doi: 10.1071/WF06078

    RodmanLA, WinterkampJ, EdminsterC, ColmanJJ, SmithWS. Coupled influences of topography and wind on wildland fire behavior. Int J Wildland Fire. 2007;16: 183–195. doi: 10.1071/WF06078, RodmanLA, WinterkampJ, EdminsterC, ColmanJJ, SmithWS. Coupled influences of topography and wind on wildland fire behavior. Int J Wildland Fire. 2007;16: 183–195. doi: 10.1071/WF06078

  • (SetterfieldSA, Rossiter-RachorNA, DouglasMM, WaingerL, PettyAM, BarrowPet al. Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale. PLOS One. 2013;8: e59144. doi: 10.1371/journal.pone.005914423690917)

    SetterfieldSA, Rossiter-RachorNA, DouglasMM, WaingerL, PettyAM, BarrowPet al. Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale. PLOS One. 2013;8: e59144. doi: 10.1371/journal.pone.005914423690917

    SetterfieldSA, Rossiter-RachorNA, DouglasMM, WaingerL, PettyAM, BarrowPet al. Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale. PLOS One. 2013;8: e59144. doi: 10.1371/journal.pone.005914423690917, SetterfieldSA, Rossiter-RachorNA, DouglasMM, WaingerL, PettyAM, BarrowPet al. Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale. PLOS One. 2013;8: e59144. doi: 10.1371/journal.pone.005914423690917

  • (WyseSV, PerryGLW, CurranTJ. Shoot-Level Flammability of Species Mixtures is Driven by the Most Flammable Species: Implications for Vegetation-Fire Feedbacks Favouring Invasive Species. Ecosystems. 2018;21: 886–900. doi: 10.1007/s10021-017-0195-z)

    WyseSV, PerryGLW, CurranTJ. Shoot-Level Flammability of Species Mixtures is Driven by the Most Flammable Species: Implications for Vegetation-Fire Feedbacks Favouring Invasive Species. Ecosystems. 2018;21: 886–900. doi: 10.1007/s10021-017-0195-z

    WyseSV, PerryGLW, CurranTJ. Shoot-Level Flammability of Species Mixtures is Driven by the Most Flammable Species: Implications for Vegetation-Fire Feedbacks Favouring Invasive Species. Ecosystems. 2018;21: 886–900. doi: 10.1007/s10021-017-0195-z, WyseSV, PerryGLW, CurranTJ. Shoot-Level Flammability of Species Mixtures is Driven by the Most Flammable Species: Implications for Vegetation-Fire Feedbacks Favouring Invasive Species. Ecosystems. 2018;21: 886–900. doi: 10.1007/s10021-017-0195-z

  • (ParksSA, HolsingerLM, PanuntoMH, JollyWM, DobrowskiSZ, DillonGK. High-severity fire: evaluating its key drivers and mapping its probability across western US forests, Environ Res Lett. 2018;13. doi: 10.1088/1748-9326/aab791)

    ParksSA, HolsingerLM, PanuntoMH, JollyWM, DobrowskiSZ, DillonGK. High-severity fire: evaluating its key drivers and mapping its probability across western US forests, Environ Res Lett. 2018;13. doi: 10.1088/1748-9326/aab791

    ParksSA, HolsingerLM, PanuntoMH, JollyWM, DobrowskiSZ, DillonGK. High-severity fire: evaluating its key drivers and mapping its probability across western US forests, Environ Res Lett. 2018;13. doi: 10.1088/1748-9326/aab791, ParksSA, HolsingerLM, PanuntoMH, JollyWM, DobrowskiSZ, DillonGK. High-severity fire: evaluating its key drivers and mapping its probability across western US forests, Environ Res Lett. 2018;13. doi: 10.1088/1748-9326/aab791

  • (NolinAW. Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA. Mt. Res. Dev. 2012;32. doi: 10.1659/MRD-JOURNAL-D-11-00038.S1)

    NolinAW. Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA. Mt. Res. Dev. 2012;32. doi: 10.1659/MRD-JOURNAL-D-11-00038.S1

    NolinAW. Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA. Mt. Res. Dev. 2012;32. doi: 10.1659/MRD-JOURNAL-D-11-00038.S1, NolinAW. Perspectives on Climate Change, Mountain Hydrology, and Water Resources in the Oregon Cascades, USA. Mt. Res. Dev. 2012;32. doi: 10.1659/MRD-JOURNAL-D-11-00038.S1

  • Colton Miller, S. O’Neill, M. Rorig, E. Alvarado (2019)

    Air-Quality Challenges of Prescribed Fire in the Complex Terrain and Wildland Urban Interface Surrounding Bend, Oregon

    Atmosphere

  • R. Hammer, V. Radeloff, J. Fried, Susan Stewart (2007)

    Wildland-urban interface housing growth during the 1990s in California, Oregon, and Washington

    International Journal of Wildland Fire, 16

  • S. Wyse, George Perry, T. Curran (2018)

    Shoot-Level Flammability of Species Mixtures is Driven by the Most Flammable Species: Implications for Vegetation-Fire Feedbacks Favouring Invasive Species

    Ecosystems, 21

  • J. Halofsky, D. Peterson, Brian Harvey (2020)

    Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA

    Fire Ecology, 16

  • R. Linn, J. Winterkamp, C. Edminster, J. Colman, W. Smith (2007)

    Coupled influences of topography and wind on wildland fire behaviour

    International Journal of Wildland Fire, 16

  • (RollinsMG. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildland Fire. 2009;18: 235–249. doi: 10.1071/WF08088)

    RollinsMG. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildland Fire. 2009;18: 235–249. doi: 10.1071/WF08088

    RollinsMG. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildland Fire. 2009;18: 235–249. doi: 10.1071/WF08088, RollinsMG. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildland Fire. 2009;18: 235–249. doi: 10.1071/WF08088

  • Kevin Vogler, A. Ager, M. Day, M. Jennings, J. Bailey (2015)

    Prioritization of Forest Restoration Projects: Tradeoffs between Wildfire Protection, Ecological Restoration and Economic Objectives

    Forests, 6

  • C. Homer, Chengquan Huang, Limin Yang, B. Wylie, M. Coan (2004)

    Development of a 2001 National land-cover database for the United States

    Photogrammetric Engineering and Remote Sensing, 70

  • (2020)

    Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire risk components for the United States
  • (Hendersen E & Kagan J. New Venture Fund Project Report, Mapping Gorse along the Southern Oregon Coast, 2017. https://gorseactiongroup.org/wp-content/uploads/2017/08/Gorse-Mapping-Report_Institure-for-Natural-Resources.pdf.)

    Hendersen E & Kagan J. New Venture Fund Project Report, Mapping Gorse along the Southern Oregon Coast, 2017. https://gorseactiongroup.org/wp-content/uploads/2017/08/Gorse-Mapping-Report_Institure-for-Natural-Resources.pdf., Hendersen E & Kagan J. New Venture Fund Project Report, Mapping Gorse along the Southern Oregon Coast, 2017. https://gorseactiongroup.org/wp-content/uploads/2017/08/Gorse-Mapping-Report_Institure-for-Natural-Resources.pdf.

  • (RuppDE, AbatzoglouJT, MotePW. Projections of 21st century climate of the Columbia River Basin. Clim Dyn. 2017;49: 1783–1799. doi: 10.1007/s00382-016-3418-7)

    RuppDE, AbatzoglouJT, MotePW. Projections of 21st century climate of the Columbia River Basin. Clim Dyn. 2017;49: 1783–1799. doi: 10.1007/s00382-016-3418-7

    RuppDE, AbatzoglouJT, MotePW. Projections of 21st century climate of the Columbia River Basin. Clim Dyn. 2017;49: 1783–1799. doi: 10.1007/s00382-016-3418-7, RuppDE, AbatzoglouJT, MotePW. Projections of 21st century climate of the Columbia River Basin. Clim Dyn. 2017;49: 1783–1799. doi: 10.1007/s00382-016-3418-7

  • J. Scasta, J. Weir, M. Stambaugh (2016)

    Droughts and Wildfires in Western U.S. Rangelands

    Rangelands, 38

  • Megan Creutzburg, J. Halofsky, Joshua Halofsky, Treg Christopher (2014)

    Climate Change and Land Management in the Rangelands of Central Oregon

    Environmental Management, 55

  • A. Ager, M. Day, Kevin Vogler (2016)

    Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests.

    Journal of environmental management, 176

  • (Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar Massada A, et al. The 1990–2010 wildland-urban interface of the conterminous United States—geospatial data. 2nd Edition. Fort Collins 2017, CO: Forest Service Research Data Archive. 10.2737/RDS-2015-0012-2.)

    Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar Massada A, et al. The 1990–2010 wildland-urban interface of the conterminous United States—geospatial data. 2nd Edition. Fort Collins 2017, CO: Forest Service Research Data Archive. 10.2737/RDS-2015-0012-2.

    Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar Massada A, et al. The 1990–2010 wildland-urban interface of the conterminous United States—geospatial data. 2nd Edition. Fort Collins 2017, CO: Forest Service Research Data Archive. 10.2737/RDS-2015-0012-2., Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar Massada A, et al. The 1990–2010 wildland-urban interface of the conterminous United States—geospatial data. 2nd Edition. Fort Collins 2017, CO: Forest Service Research Data Archive. 10.2737/RDS-2015-0012-2.

  • (Finney MA. An overview of FlamMap fire modeling capabilities. In: Andrews, Patricia L.; Butler, Bret W., comps. 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2006;41: 213–220.)

    Finney MA. An overview of FlamMap fire modeling capabilities. In: Andrews, Patricia L.; Butler, Bret W., comps. 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2006;41: 213–220.

    Finney MA. An overview of FlamMap fire modeling capabilities. In: Andrews, Patricia L.; Butler, Bret W., comps. 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2006;41: 213–220., Finney MA. An overview of FlamMap fire modeling capabilities. In: Andrews, Patricia L.; Butler, Bret W., comps. 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2006;41: 213–220.

  • Oregon Department of Forestry. Final ODF fire report for 2020 fire season
  • Stacy Drury, H. Rauscher, Erin Banwell, Shihming Huang, Tami Lavezzo (2016)

    The Interagency Fuels Treatment Decision Support System: Functionality for Fuels Treatment Planning

    Fire Ecology, 12

  • (CutlerDR, EdwardsTCJr, BeardKH, CutlerA, HessKT, GibsonJ, et al. Random forests for classification in ecology. Ecology. 2007;88: 2783–2792. doi: 10.1890/07-0539.118051647)

    CutlerDR, EdwardsTCJr, BeardKH, CutlerA, HessKT, GibsonJ, et al. Random forests for classification in ecology. Ecology. 2007;88: 2783–2792. doi: 10.1890/07-0539.118051647

    CutlerDR, EdwardsTCJr, BeardKH, CutlerA, HessKT, GibsonJ, et al. Random forests for classification in ecology. Ecology. 2007;88: 2783–2792. doi: 10.1890/07-0539.118051647, CutlerDR, EdwardsTCJr, BeardKH, CutlerA, HessKT, GibsonJ, et al. Random forests for classification in ecology. Ecology. 2007;88: 2783–2792. doi: 10.1890/07-0539.118051647

  • M. Xiao, Bart Nijssen, D. Lettenmaier (2016)

    Drought in the Pacific Northwest, 1920–2013

    Journal of Hydrometeorology, 17

  • (Stutts M. National Register of Historic Places. National Register properties are located throughout the United States and their associated territories around the globe. National Park Service 2014, U.S. Department of the Interior. Database https://irma.nps.gov/DataStore/Reference/Profile/2210280.)

    Stutts M. National Register of Historic Places. National Register properties are located throughout the United States and their associated territories around the globe. National Park Service 2014, U.S. Department of the Interior. Database https://irma.nps.gov/DataStore/Reference/Profile/2210280.

    Stutts M. National Register of Historic Places. National Register properties are located throughout the United States and their associated territories around the globe. National Park Service 2014, U.S. Department of the Interior. Database https://irma.nps.gov/DataStore/Reference/Profile/2210280., Stutts M. National Register of Historic Places. National Register properties are located throughout the United States and their associated territories around the globe. National Park Service 2014, U.S. Department of the Interior. Database https://irma.nps.gov/DataStore/Reference/Profile/2210280.

  • (1995)

    Ecoregions—a framework for environmental management
  • (Oregon Department of Agriculture. Oregon Agricultural Statistics 2019. https://www.oregon.gov/ODA/shared/Documents/Publications/Administration/ORAgFactsFigures.pdf.)

    Oregon Department of Agriculture. Oregon Agricultural Statistics 2019. https://www.oregon.gov/ODA/shared/Documents/Publications/Administration/ORAgFactsFigures.pdf.

    Oregon Department of Agriculture. Oregon Agricultural Statistics 2019. https://www.oregon.gov/ODA/shared/Documents/Publications/Administration/ORAgFactsFigures.pdf., Oregon Department of Agriculture. Oregon Agricultural Statistics 2019. https://www.oregon.gov/ODA/shared/Documents/Publications/Administration/ORAgFactsFigures.pdf.

  • Brooke, A., Cassell, Robert, M., Scheller, Melissa, S., Lucash, Matthew, D., Hurteau, E., Louise Loudermilk (2019)

    Widespread severe wildfires under climate change lead to increased forest hom*ogeneity in dry mixed‐conifer forests

    Ecosphere

  • Ryan Haugo, C. Zanger, T. Demeo, C. Ringo, Ayn Shlisky, Kori Blankenship, Mike Simpson, Kim Mellen-McLean, Jane Kertis, M. Stern (2015)

    A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA

    Forest Ecology and Management, 335

  • (HoldenZA, HansonAS, LuceCH, JollyWM, ManetaM, OylerJW, et al. Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS. 2018;115: 8349–8357. doi: 10.1073/pnas.180231611530126983)

    HoldenZA, HansonAS, LuceCH, JollyWM, ManetaM, OylerJW, et al. Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS. 2018;115: 8349–8357. doi: 10.1073/pnas.180231611530126983

    HoldenZA, HansonAS, LuceCH, JollyWM, ManetaM, OylerJW, et al. Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS. 2018;115: 8349–8357. doi: 10.1073/pnas.180231611530126983, HoldenZA, HansonAS, LuceCH, JollyWM, ManetaM, OylerJW, et al. Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS. 2018;115: 8349–8357. doi: 10.1073/pnas.180231611530126983

  • (Bradshaw L & McCormick E. FireFamily Plus user’s guide, Version 2.0. Gen. Tech. Rep. RMRS-GTR-67. Ogden, UT: U.S. Department of Agriculture 2000, Forest Service, Rocky Mountain Research Station, 124 pp. 10.2737/RMRS-GTR-67.)

    Bradshaw L & McCormick E. FireFamily Plus user’s guide, Version 2.0. Gen. Tech. Rep. RMRS-GTR-67. Ogden, UT: U.S. Department of Agriculture 2000, Forest Service, Rocky Mountain Research Station, 124 pp. 10.2737/RMRS-GTR-67., Bradshaw L & McCormick E. FireFamily Plus user’s guide, Version 2.0. Gen. Tech. Rep. RMRS-GTR-67. Ogden, UT: U.S. Department of Agriculture 2000, Forest Service, Rocky Mountain Research Station, 124 pp. 10.2737/RMRS-GTR-67.

  • (XiaoM, NijssenB, LettenmaierDP. Drought in the Pacific Northwest, 1920–2013. J Hydrometeorol. 2016;17: 2391–2404. doi: 10.1175/JHM-D-15-0142.1)

    XiaoM, NijssenB, LettenmaierDP. Drought in the Pacific Northwest, 1920–2013. J Hydrometeorol. 2016;17: 2391–2404. doi: 10.1175/JHM-D-15-0142.1

    XiaoM, NijssenB, LettenmaierDP. Drought in the Pacific Northwest, 1920–2013. J Hydrometeorol. 2016;17: 2391–2404. doi: 10.1175/JHM-D-15-0142.1, XiaoM, NijssenB, LettenmaierDP. Drought in the Pacific Northwest, 1920–2013. J Hydrometeorol. 2016;17: 2391–2404. doi: 10.1175/JHM-D-15-0142.1

  • (Scott JH., Gilbertson-Day JW, Moran C, Dillon GK, Short KC, Vogler KC. Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire risk components for the United States. Fort Collins, CO, 2020, Forest Service Research Data Archive. 10.2737/RDS-2020-016.)

    Scott JH., Gilbertson-Day JW, Moran C, Dillon GK, Short KC, Vogler KC. Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire risk components for the United States. Fort Collins, CO, 2020, Forest Service Research Data Archive. 10.2737/RDS-2020-016.

    Scott JH., Gilbertson-Day JW, Moran C, Dillon GK, Short KC, Vogler KC. Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire risk components for the United States. Fort Collins, CO, 2020, Forest Service Research Data Archive. 10.2737/RDS-2020-016., Scott JH., Gilbertson-Day JW, Moran C, Dillon GK, Short KC, Vogler KC. Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire risk components for the United States. Fort Collins, CO, 2020, Forest Service Research Data Archive. 10.2737/RDS-2020-016.

  • (OmernikJM. Ecoregions—a framework for environmental management. In DavisWS, SimonTP (Eds.), Biological assessment and criteria-tools for water resource planning and decision making, Lewis Publishers, Boca Raton, Florida, 1995, pp. 49–62.)

    OmernikJM. Ecoregions—a framework for environmental management. In DavisWS, SimonTP (Eds.), Biological assessment and criteria-tools for water resource planning and decision making, Lewis Publishers, Boca Raton, Florida, 1995, pp. 49–62.

    OmernikJM. Ecoregions—a framework for environmental management. In DavisWS, SimonTP (Eds.), Biological assessment and criteria-tools for water resource planning and decision making, Lewis Publishers, Boca Raton, Florida, 1995, pp. 49–62., OmernikJM. Ecoregions—a framework for environmental management. In DavisWS, SimonTP (Eds.), Biological assessment and criteria-tools for water resource planning and decision making, Lewis Publishers, Boca Raton, Florida, 1995, pp. 49–62.

  • (KolbTE, FettigCJ, AyresMP, BentzBJ, HickeJA, MathiasenR, et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States, Forest Ecol Manage. 380:2016: 321–334. doi: 10.1016/j.foreco.2016.04.051)

    KolbTE, FettigCJ, AyresMP, BentzBJ, HickeJA, MathiasenR, et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States, Forest Ecol Manage. 380:2016: 321–334. doi: 10.1016/j.foreco.2016.04.051

    KolbTE, FettigCJ, AyresMP, BentzBJ, HickeJA, MathiasenR, et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States, Forest Ecol Manage. 380:2016: 321–334. doi: 10.1016/j.foreco.2016.04.051, KolbTE, FettigCJ, AyresMP, BentzBJ, HickeJA, MathiasenR, et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States, Forest Ecol Manage. 380:2016: 321–334. doi: 10.1016/j.foreco.2016.04.051

  • Journals /
  • PLoS ONE /
  • Volume 17 Issue 3
  • Subject Areas
A quantitative wildfire risk assessment using a modular approach of geostatistical clustering and regionally distinct valuations of assets—A case study in Oregon, PLoS ONE | DeepDyve (2024)
Top Articles
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 5387

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.